skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alba Flores, Akintomide Adebile"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IEEE (Ed.)
    This research involves developing a drone control system that functions by relating EEG and EMG from the forehead to different facial movements using recurrent neural networks (RNN) such as long-short term memory (LSTM) and gated recurrent Unit (GRU). As current drone control methods are largely limited to handheld devices, regular operators are actively engaged while flying and cannot perform any passive control. Passive control of drones would prove advantageous in various applications as drone operators can focus on additional tasks. The advantages of the chosen methods and those of some alternative system designs are discussed. For this research, EEG signals were acquired at three frontal cortex locations (fp1, fpz , fp2 ) using electrodes from an OpenBCI headband and observed for patterns of Fast Fourier Transform (FFT) frequency-amplitude distributions. Five different facial expressions were repeated while recording EEG signals of 0-60Hz frequencies with two reference electrodes placed on both earlobes. EMG noise received during EEG measurements was not filtered away but was observed to be minimal. A dataset was first created for the actions done, and later categorized by a mean average error (MAE), a statistical error deviation analysis and then classified with both an LSTM and GRU neural network by relating FFT amplitudes to the actions. On average, the LSTM network had classification accuracy of 78.6%, and the GRU network had a classification accuracy of 81.8%. 
    more » « less